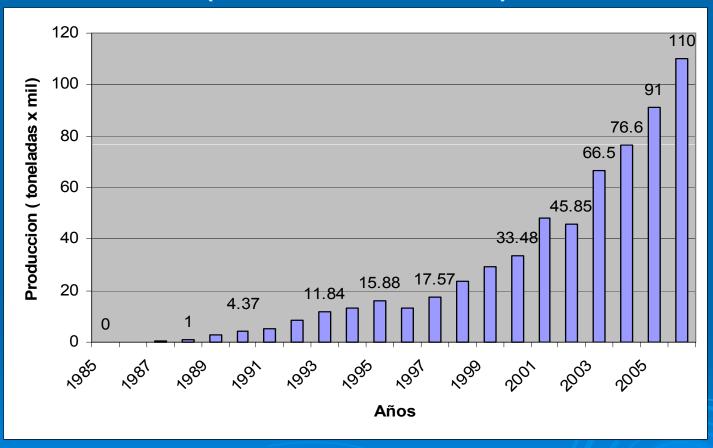


METODO ALTERNATIVO PARA LA EVALUACION DEL PROCESO DE ALIMENTACION EN EL CULTIVO DE CAMARON.

MARCO ANTONIO ROSS GUERRERO LOURDES MURGUIA RUIZ JOSÉ ÁNGEL CORONADO

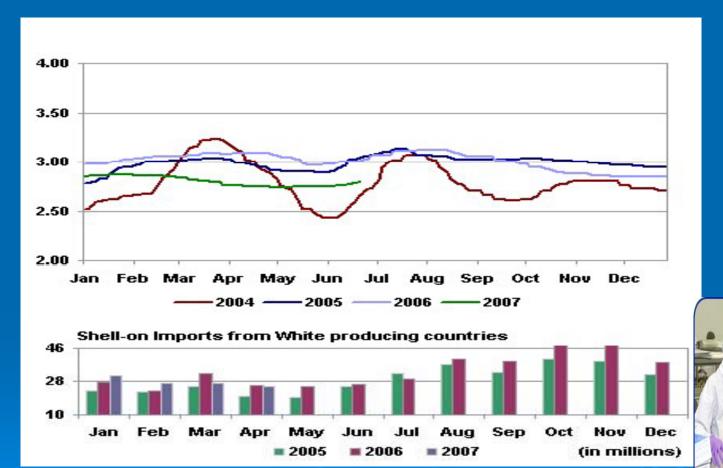
RG Ambiente y Acuacultura SC Hermosillo, Sonora, JULIO 2008


Índice

- Producción en México de camarón
- > Tendencia de Precios
- Estructura de costos de producción de Camarón de acuacultura
- Proceso de alimentación
- Objetivos
- Marco Teórico
- > Resultados
- > Conclusión.

Registros de producción en de camarón de acuicultura en México

(miles de toneladas).



Fuente: 1985-1988, FAO 1991, 1989-1999 INP,2000,

2000-2002 Anuario de pesca 2003,

2003-2006 Comités Estatales de Sanidad Acuícola (CESA).

Registro histórico de precios de camarón (26 de junio 2007).

Fuente: www.Seafood today, 26 junio 2007

Eficiencia y eficacia

Eficiencia (Medios)

Eficacia (fines)

Uso de recursos Desperdicio

ALTO → BAJO

Logro de Metas

ALTO ← BAJO

La Administración se esfuerza por desperdicio BAJO de recursos (eficiencia) logro ALTO de metas (Eficacia)

Estructura de costo de producción de camarón.

Concepto	1 ha.	Costo unitario dlls	Unidad	Total	%
Postlarva	150,000	6	Millar	900	9
Alimento	7,056	680	Tonelada	4,798	43
Comercialización	4,212	.5	Lb	2,106	22
Insumos				30	1.5
Combustibles				1200	15
Mano de obra				450	8
Mant obra civil				100	1.5
Costo/ha.				9,584	

FCA

На	Ton/Ha	Total (ton)	FCA	Alimento total (ton)	800 dlls/ton
100	4.5	450	2.0	900	720,000
100	4.5	450	1.8	810	648,000

Diferencia de =72,000/2 0.1= 36,000

Calculo del FCA

- Días de cultivo 180-200
 - Lo estimo un día después del ultimo día.
 - En la noche.
 - Ya que nos den el dato de la planta.

- Si salio bien así estaba planeado,
- > si no háblale al encargado de la sección!!!.

- Estamos evaluando el proceso en razón del ultimo día.
 - Esto es valido para la EFICACIA del proceso.
 - Pero en cuanto a EFICIENCIA se ve limitado.

Factores primarios que determinan el rendimiento nutricional y el éxito de un alimento balanceado

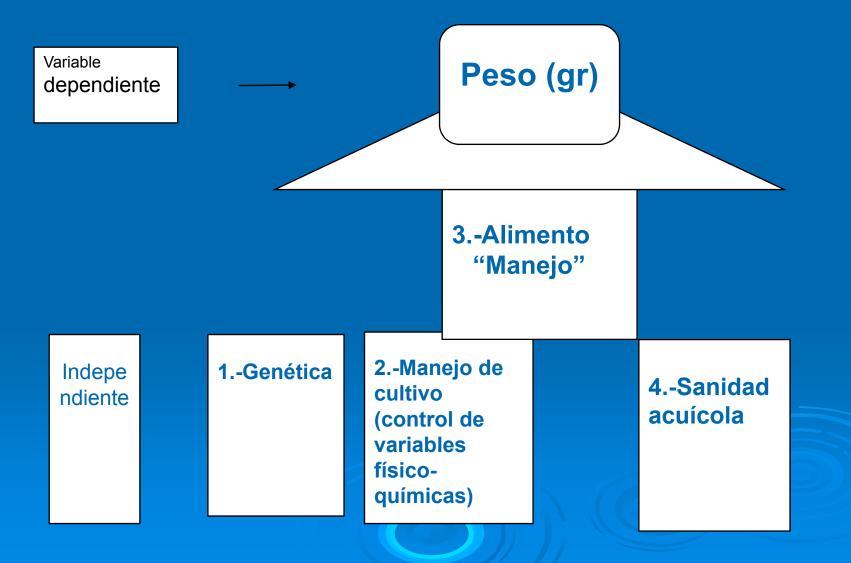
- El medio acuático y la disponibilidad del alimento natural.
- Formulación del alimento y su contenido nutricional
- Fabricación y sus características físicas
- Manejo y almacenamiento del alimento
- Métodos de aplicación y regimenes de alimentación.

Áreas con amplio desarrollo

- Fabricación de alimento, equipos
- Evaluación de nuevos Insumos.
- Concentración de proteína y balance.
- Características físicas.

Variantes en el proceso de alimentación en la granja

- Distribución
 - PANGA
 - SOPLADOR
 - KAYAKS
- > Suministro
 - Tablas de referencia
 - Monitoreo con charolas
 - Comederos
- > Precio
- Desde 1986....a la fecha .

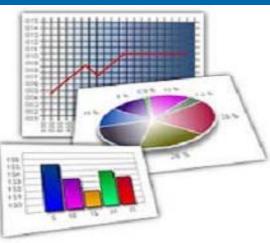

Algunos factores que intervienen en el proceso de alimentación.

- > Sub alimentación... Precaución,
- Exceso de alimento.
 - Falsa apreciación de consumo
 - Personal
 - Experiencia.
 - Falta de pago.
 - Enfado.
 - Cansancio.
 - Ya se quieren ir los charoleros
- Mortalidad
 - Natural
 - Enfermedades
 Cuando??? Chico o grande

Objetivo

- Analizar el proceso productivo del cultivo de camarón, con un enfoque administrativo con énfasis en el manejo del alimento,
- > Evaluando:
 - Eficacia
 - Eficiencia
- Buscar alternativas de medición de los procesos (MANEJO) para su mejor comprensión, control y toma de decisiones.

Marco Teórico.



Metodología

- Con la información generada se realizo el análisis estadístico para su evaluación.
- Análisis exploratorio de los datos obtenidos.
- La eficacia en razón de los resultados finales de producción.
- Eficiencia del proceso de cultivo con base en la variabilidad de la información. 5, 10,15, 20.
- Regresión lineal,
- Análisis de varianza
- Prueba de Duncan.

Resultados -Exploratorio -Eficacia -Eficiencia

Cedula de información

Acuicola Mexico S.A de C.V. Reporte Semanal de Produccion SECCION A / B Semana 14 Del 17 al 23 de julio 2006

EST	HAS	FECHA DE	ORIGEN	DIAS DE	ORG. FAC	PES	O PROM	(gr)	. %	No. ORG	ORG/m2	BIO. ACT.	AL	MENTO (kg)	F.C.A
0.		SIEMBRA	(LAB)	CULTIVO	MILES	ANT	ACT	INC	SOB	(MILES)	ORGANIZ	BIO. ACT.	ANT	SEM	ACU.	F.U.A
1A	5	17-abr-06	Maricultura	90	1,000	11.00	13.00	2.00	90	900	18	11,700	11,475	2,750	14,225	1.22
2A	5	17-abr-07	Maricultura	90	1,000	10.60	12.70	2.10	85	850	17	10,795	11,870	2,725	14,595	1.35
3A	5	17-abr-08	Maricultura	90	1,000	10.10	12.00	1.90	90	900	18	10,800	11,410	2,625	14,035	1.30
4A	5	17-abr-09	Maricultura	90	1,000	10.20	11.90	1.70	85	850	17	10,115	10,300	2,600	12,900	1.28
5A	5	17-abr-10	Maricultura	90	1,000	9.80	11.60	1.80	95	950	19	11,020	12,605	2,775	15,380	1.40
6A	5	17-abr-11	Maricultura	90	1,000	9.30	10.80	1.50	95	950	19	10,260	12,615	2,700	15,315	1.49
7A	5	17-abr-12	Maricultura	90	1,000	9.70	11.30	1.60	85	850	17	9,605	11,350	2,575	13,925	1.45
8A	6	17-abr-13	Maricultura	90	1,200	9.00	10.30	1.30	85	1020	17	10,506	11,710	2,575	14,285	1.36
۸B	6.7	23-abr-06	Ac Mahr	84	1,340	8.30	9.60	1.30	85	1139	17	10,934	11,801	2,550	14,351	1.31
1B	4	23-abr-06	Ac Mahr	84	800	9.00	10.50	1.50	85	680	17	7,140	9,029	2,100	11,129	1.56
_2B	5	02-May-06	Syaqua	75	1,000	8.60	10.00	1.40	75	750	15	7,500	8,658	1,525	10,183	1.36
38	5	02-May-06	Syaqua	75	1,000	8.20	9.40	1.20	80	800	16	7,520	8,958	1,575	10,533	1.40
4B	_ 5_	23-abr-06	Ac Mahr	84	1,000	9.10	10.50	1.40	85	850	17	8,925	10,027	2,100	12,127	1.36
5 B	5	23-abr-06	Ac Mahr	84	1,000	9.00	10.10	1.10	90	900	18	9,090	10,552	2,175	12,727	1.40
6B	5	24-abr-06	Ac Mahr	83	1,000	9.50	10.80	1.30	85	850	17	9,180	9,997	2,100	12,097	1.32
7B	5	24-abr-06	Ac Mahr	83	1,000	9.30	10.80	1.50	80	800	16	8,640	9,222	2,100	11,322	1.31
8B	5	24-abr-06	Ac Mahr	83	1,000	9.70	11.20	1.50	75	750	15	8,400	9,182	1,650	10,832	1.29
9B	5	24-abr-06	Ac Mahr	83	1,000	10.20	12.00	1.80	75	750	15	9,000	9,082	1,950	11,032	1.23
10B	5	24-abr-06	Ac Mahr	83	1,000	8.90	10.40	1.50	90	900	18	9,360	11,077	2,100	13,177	1.41
11B	5	24-abr-06	Ac Mahr	83	1,000	10.70	12.20	1.50	80	800	16	9,760	9,397	1,600	10,997	1.13
12B	5	24-abr-06	Ac Mahr	83	1,000	10.40	12.40	2.00	75	750	15	9,300	8,037	1,500	9,537	1.03
13B	5	24-abr-06	Ac Mahr	83	1,000	10.00	11.80	1.80	75	750	15	8,850	7,998	1,625	9,623	1.09
14B	5.8	24-abr-06	Ac Mahr	83	1,160	9.00	10.60	1.60	85	986	17	10,452	9,842	1,875	11,717	1.12
15B	5.8	24-abr-06	Ac Mahr	83	1,160	9.10	10.90	1.80	85	986	17	10,747	9,874	1,875	11,749	1.09
16B		25-abr-06	Ac Mahr	82	1,160	7.50	8.80	1.30	95	1102	19	9,698	10,593	2,425	13,018	1.34
17B	5.8	25-abr-06	Ac Mahr	82	1,160	7.30	8.30	1.00	95	1102	19	9,147	10,703	2,450	13,153	1.44
18B	4.8	25-abr-06	Ac Mahr	82	960	8.40	10.10	1.70	95	912	19	9,211	9,707	2,375	12,082	1.31
19B	4.8	25-аbг-06	Ac Mahr	82	960	7.60	8.90	1.30	90	864	18	7,690	9,273	2,050	11,323	1.47
					28,900	9.27	10.82	1.55	85.36	24691	17.1	265,344	286,344	61,025	347,369	1.31

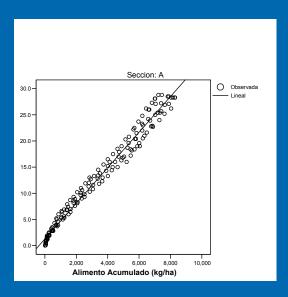
Unidad de producción "Acuícola México en la Costa de Hermosillo".

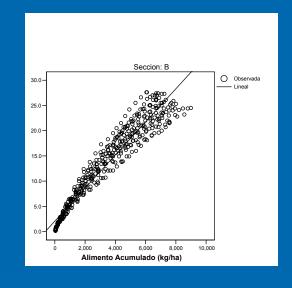
Sección	Numero De Estanques	Tamaño (ha.)	Área Total (ha.)	Siembra Cosecha
A	8	5	41	
В	19	4.8-5.8	96.8	Abril- Noviembre
E	29	5	145	

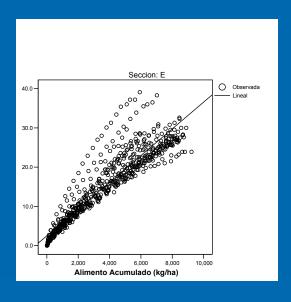
Análisis exploratorio

Resultados Total ciclo 2006

	N	Estanque Mínimo Máximo		Total	Media	Desv. típ.
Biomasa (ton)	56	10.0	24.6	1,009	18.0	3.15
Alimento Total (ton)	56	26.1	50.6	2,272	40.6	5.6
Peso (gr)	56	22.50	39.10		27.82	3.01
FCA	56	1.87	3.85		2.29	0.37
Biomasa/ha (ton)	56	2.0	4.9		3.57	.602
Alimento/ha. (ton)	56	5.2	10.01		8.05	1.12
Sobrevivencia (%)	56	0.35	1.15		.70	.15
N válido (según lista)	56					


Resultados por sección


Sección		N	Estar Mínimo	ique Máximo	Media	Desv. típ.
A	Peso (gr)	8	26.70	28.80	28.05	.72
	Biomasa (kg)	8	16,778	20,645	18,665	1,314
	FCA	8	1.99	2.44	2.27	0.17
	Sob (%)	8	59	78	68	6.0
	Alimento kg/ha	8	7,235	9,236	8,253	699
	Biomasa kg/ha	8	2,966	4,129	3,659	377
	Semanas	8	24	28	26	1
	N válido (según lista)	8				


Sección		N	Estan Mínimo	ique Máximo	Media	Desv. típ.
В	Peso (gr)	19	22.50	27.60	25.96	1.39
	Biomasa (kg)	19	15,045	23,845	19,575	2,296
	FCA	19	1.87	2.62	2.10	0.17
	Sob (%)	19	60	93	74	9.8
	Alimento Kg/Ha	19 (6,222	9,857	8,068	1,028
	Biomasa Kg/Ha	19	3,335	4,631	3,846	355
	Semanas	19	25	29	28	1
	N válido (según lista)	19				

Sección		N	Esta: Mínimo	nque Máximo	Media	Desv. típ.
	Peso (gr)	29	24.00	39.10	28.98	3.57
	Biomasa (kg)	29	10,035	24,651	16,827	3,525
E	FCA	29	1.99	3.85	2.43	.44
	Sob (%)	29	35	1.15	68	19
	Alimento kg/Ha	29	5,218	10,011	7,984	1,285
	Biomasa Kg/Ha)	29	2,007	4,930	3,365	705
	Semanas	29	22	30	26	2
	N válido (según lista)	29				

Regresión Peso (gr)- Alimento acum (kg) Por sección

Sección	Modelo	R	R cuadrado	R cuadrado corregida	Error típ. de la estimación
A	1	.990(a)	.981	.981	1.2855
В	1	.965(a)	.932	.932	2.2236
E	1	.929(a)	.863	.863	3.5871

Coeficientes de regresión peso- alimento acumulado/ha.

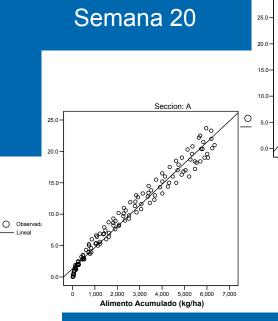
Seccion	Modelo		Coeficientes no estandarizados		Coeficientes estandarizados	t	Sig.
			В	Error típ.	Beta		
A	1	(Constant e)	1.287	.149		8.623	.000
		alimAcum ha	.003	.000	.990	94.999	.000
В	1	(Constant e)	2.066	.164		12.618	.000
		alimAcum ha	.003	.000	.965	81.331	.000
E	1	(Constant e)	2.513	.225		11.174	.000
		alimAcum ha	.003	.000	.929	65.096	.000

Resultados a cosecha,

(Pruebas de Duncan)

Talla FCA

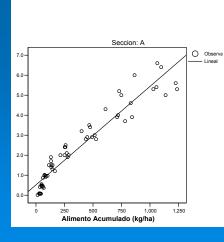
Sección		Subconjunto		
	N	1	2	
В	19	25.95		
Α	8		28.05	
E	29		28.97	
Significación		1.000	.371	

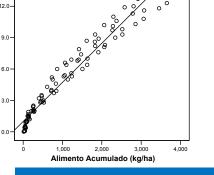

Sección		Subconjunto	
	N	1	2
В	19	2.10	
A	8	2.27	2.27
E	29		2.43
Significación		.193	.214

No hubo diferencia en Alimento total/ha, sobrevivencia u origen.

Pruebas de subconjuntos homogéneos para alimento Acumulado Kg/ha, semanas 5, 10,15,20

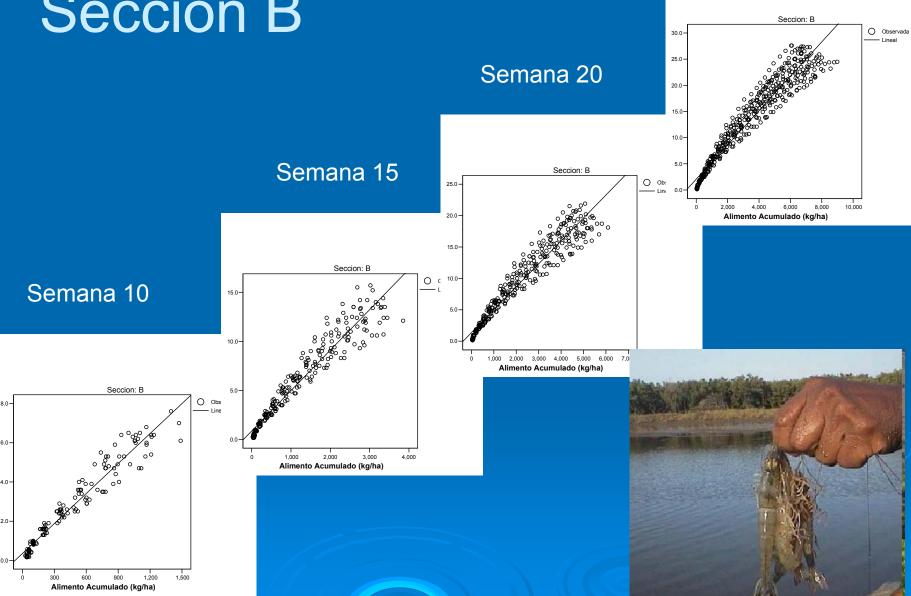
Samana	Sandián.	N	Subconjuntos		
Semana	Sección		1	2	
5	A B E	24 60 87	54.16 73.02	73.02 93.36	
significación			.076	1.000	
10	A B E	64 160 232	358.26 433.41	566.68	
significación			.219	1.000	
15	A B E	104 260 377	1,142.92 1,154.54 1,379.28		
significación			.061		

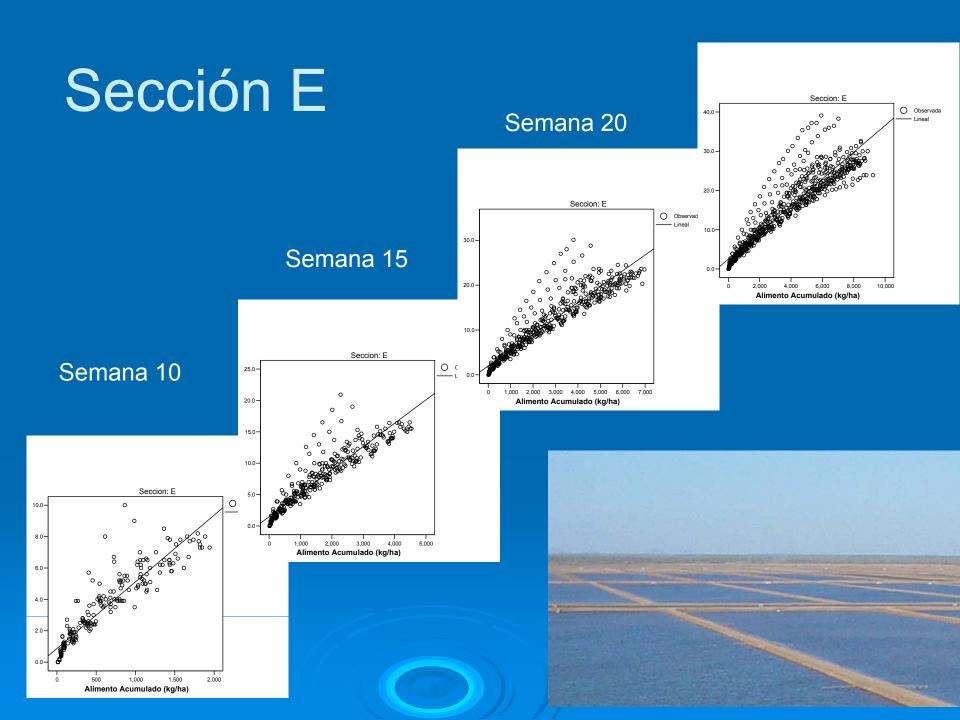

Sección A



Semana 15

Seccion: A


Seccion: A


4,000

Alimento Acumulado (kg/ha)

8,000

Sección B

Regresión Peso alimento Semana 10

Sección	Modelo	R	R cuadrado	R cuadrado corregid a	Error típ. de la estimació n
A	1	.958(a)	.919	.917	.5400
В	1	.972(a)	.944	.944	.4887
Е	1	.923(a)	.853	.852	.9276

Coeficientes de regresión Semana 10

Sección	Modelo		Coeficientes no estandarizad os		Coeficient es estan dariza dos	t	Sig.
			В	Error típ.	Beta		
A	1	(Constante)	.517	.095		5.452	.000
		AlimAcumH A	.005	.000	.958	26.471	.000
В	1	(Constante)	.353	.058		6.128	.000
		AlimAcumH A	.005	.000	.972	51.811	.000
E	1	(Constante)	.869	.090		9.676	.000
		AlimAcumH A	.004	.000	.923	36.475	.000

Consolidado de coeficientes de regresión peso-alimento acum. para semana 5,10,15,20,25

Semana	5	10	15	20	25
Secciones					
A	.015	.005	.004	.003	.003
В	.010	005	.004	.004	.003
E	.007	.004	.004	.004	.003

Pruebas de Duncan entre secciones para peso semana 5,10,15,20

C	0 ::	DI	Subconjuntos	
Semana	Sección	N	1	2
5	A	24	0.49	
	В	60	0.57	
	E	87		0.88
significación			.417	1.000
10	A	64	2.28	
	В	160	2.56	
	E	232		3.28
significación			.337	1.000
15	A	104	5.26	
	В	260	5.62	
	E	377		6.61
significación			.457	1.000
20	В	360	8.85	
	A	144	8.90	
	E	522		10.33
significación			.941	1.000

Pruebas de Duncan para alimento Kg/ha a la semana 5, 10,15,20

Samana	Sección	N	Subconju	intos
Semana	Sección	14	1	2
5	A B E	24 60 87	20.90 26.22	46.17
significación	ъ	01	.226	1.000
10	A B	64 160	134.10 141.22	155 (0
significación	E	232	.649	177.62
15	B A E	260 104 377	239.98 263.91	263.91 276.65
significación			.174	.469
20	B E A	360 522 144	281.85	318.46 335.40
significación			1.000	.255

Integración por sección

Semanas	Alimento Acumulado/ha		Alimento sema	nal/ha
	Subconjuntos		Subconjuntos	
	1	2	1	2
5	AB	BE	AB	E
10	AB	E	AB	E
15	ABE		BA	AE
20	ABE		В	EA
25	ABE		В	EA

Resultado productivo

Sección	Talla	FCA	Ingreso- costo**
A	28.05+.72	2.27 <u>+</u> .17	9,037
В	25.9+1.39	2.1 <u>+</u> .17	9,266
E	28.9+3.57	2.43 <u>+</u> .44	8,173

Conclusión

- Con base en el método de evaluación del proceso de alimentación se concluye que:
- El análisis aplicado con base en el modelo de respuesta peso-alimento permito detectar áreas de oportunidad en el manejo del cultivo durante el proceso para una toma de decisiones mas objetiva que la que se realiza con valores absolutos de peso individual o estimaciones sin análisis alguno mas haya de la comparación directa.

La interpretación del ciclo con base en los resultados finales genera un antecedente histórico que es valido para medir la eficacia del proceso, sin embargo de poco o nulo alcance para evaluar la eficiencia del mismo.

➤ El modelo aplicado permitió la comparación del manejo del alimento en razón de su efecto en el peso, permitiendo una clara comparación de las secciones en cultivo. La mejor sección en cuanto a manejo fue A, seguido de B y por ultimo E

